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Abstract. A heat exchanger consists of a helicoid and the surface of revolution obtained 
by rotating a profile curve about the axis of the helix. The surfaces are rigidly welded 
together where they meet. This limits the number of profile curves for which the heat 
exchanger may be infinitesimally deformed. These profile curves and the deformations 
they allow are determined by two arbitrary antiperiodic functions. 

1. Introduction 

A corrugated metal cylinder is often used to allow hot gas to escape from a furnace. 
The corrugations allow the tube to be bent (into an existing chimney for example). 
We ask here if it is possible to divide the tube into two by another piece of metal in 
such a way that the tube can still be bent but act as a heat exchanger. 

Consider a helicoid inside a surface of revolution obtained by rotating a curve 
g (  w )  about the axis of the helicoid. For practical reasons the two surfaces have to be 
joined rigidly along the two curves where they meet. So we demand in § 3 that under 
any deformation, the angles remain unaltered between the triplet of vectors from a 
point on the curve, one at a tangent to the curve and one other in each surface. 

When we attempt to bend the structure so formed it is resisted by forces due to 
the bending and stretching of the metal. The former is proportional to the distance 
of a point in the metal from the neutral or middle surface times the change in curvature. 
For thin metal and small deflections the forces due to bknding will be small compared 
to those due to stretching unless the latter are zero to lowest order in the deflection 
magnitude. For a general profile curve g ( w )  it is the resistance to stretching which 
prevents the structure from being deformed. We shall look for those profile curves 
which allow deformations in which neither the metal of the helicoid nor of the surface 
of revolution is stretched. It is sufficient to consider infinitesimal deformations as these 
already restrict the allowable profile curves. Moreover if terms of higher order in the 
deformation are to be included, the forces due to bending, which are of comparable 
order, should also be included, and this is beyond the scope of this paper, though the 
requirement that large deformations be possible would further restrict the class of 
profile curves. 

A deformation without stretching of the helicoid is given in § 2 by q ( u )  and +(s) 
functions of the helicoid parameters, a deformation of the surface of revolution by a 
function x ( w ,  t )  of its parameters, periodic in r, which satisfies a partial differential 
equation involving g" /g .  
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1506 F Riordan 

Section 3 shows that the requirement that, under deformation, common curves in 
the surfaces remain common and the angles between vectors in the surfaces emanating 
from a point on the common curve are unchanged, imposes a boundary condition on 
x( w, t )  which restricts the possible profile curves g( w )  for which the partial differential 
equation has non-trivial solutions x( w, t ) .  The requirement also determines q( U )  and 
+(U) from ,y and hence the deformation of both surfaces. 

We prove in 0 3 that not every profile curve g( w )  will allow deformations without 
stretching or tearing. The functional form must be such that g " / g  is a continuous 
twice-differentiable function. The scale of g( w )  must be one of a discrete set determined 
by equation (3.16). 

That there are many allowable profile curves g ( w )  is shown by the numerical 
method given in the appendix which determines g( w ) ,  given arbitrary functions of 
t :  x(0,  t )  and ~ ~ ( 0 ,  t )  which change sign under t + t + 7 ~ .  The case where these functions 
are proportional to cos t is solved exactly in 0 3. The deformations which these functions 
g ( w )  allow are also determined and are consistent with the restrictions. 

2. Helicoid inside a surface of revolution 

The helicoid can without loss of generality be given parametrically by 

x( U, s) = u i ( s )  + sk (2.1) 
where k is the axis of symmetry and i ( s )  has components cos s and sin s in the 
directions perpendicular to k. 

The surface of revolution may be written in terms of a continuous function g( w )  

y (  w, t )  = g( w ) i (  t )  + wk. (2.2) 
When we bend the structure these surfaces will be deformed into x+  6 and y + q, 

say. If no stretching of the metal is to occur then lengths and angles on the surface 
must be preserved. For infinitesimal 5, q, 

xu tu = x, * tS = y w  - qw = y ,  - q, = 0 (2.3) 

xu - 5 s  +xs * L = y w  * q, +Y, '  q w  = 0 (2.4) 

xu = i ( s )  x, = uj(  s) + k yw = g ' i (  t )  + k YI = g i ( t )  (2.5) 

and 

where the subscript denotes the partial derivative with respect to that parameter so that 

where 

j ( s )  = (d/ds)i(s) .  

i *  s s  = 4(u, s) 

( u j + k )  * Su = - 4 ( u ,  s) 

Let 

then from equation (2.4) 

and from equation (2.3) 

i . & = O  

( u j + k )  - & = 0 .  

(2.7) 

(2.9) 
(2.10) 
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Taking partial derivatives of equations (2.9) and (2.7) with respect to s and U respec- 
tively 

(2.11) j . 5  = - i s 5  us = -  4 u  

& 4 = - 4 u j - ( 4 - ~ 4 u ) k .  (2.12) 

thus 

Partially differentiating equation (2.10) with respect to U and equation (2.8) with respect 
to s we obtain 

(2.13) j .  ts = - ( u j + k )  lSu = q j s  - u i .  tu = q j s  

since 

( d / d s ) j  = -i .  (2.14) 

Thus 

& = +i + 4s( j  - u k ) .  (2.15) 

We have used the i component of the identity of sus and sSu in equation (2.11) 
and the ( u j + k )  component in equation (2.13). The ( j - u k )  component gives, by 
partially differentiating equation (2.15) with respect to U and equation (2.12) with 
respect to s, 

( 1  + u2)qjsu + u4su = Ssu - ( j -  uk) (2.16) 

(2.17) = -( 1 + U 2 ) q j , ,  + u(bs 

thus 

4 ( u ,  s) = cp(u) + +(s) 

&, = -cp‘( j -  uk) - (cp + + ) k .  

(2.18) 

(2.19) 

Therefore 

B = - c p j + k  [;(ucp‘-cp)du-u+k+ (+i+$?)ds+2(c,,  c 2 , c 3 )  (2.20) 1: 
since 

& = ( c p + + ) i + + ’ ( j - u k ) .  (2.21) 

The ci are constants, allowing for a relative translation of the two surfaces. Similarly 

t l w  = - g ‘ x ( w ,  t ) j + g ’ x , ( i - g ’ k )  (2.22) 

11 = gxi + g g ’ ( g ” ) - ’ x w ( i  - g ‘ k )  

are the solutions of equations (2.3) and (2.4). They give 

(2.23) 

t l w r  = - g ’ x J +  g ’ x i +  g ’ x J +  g ‘ x , , ( i  - g ’ k )  (2.24) 

(2.25) 
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respectively so that x may be any function of w and t which satisfies 

(2.26) 

The subscript w indicates the partial derivative of the bracket with respect to w. 

tion. That is, x(w, t )  is periodic in t with period 257. So if 
Let us now require that the surface of revolution remains closed under the deforma- 

(2.27) 

(2.28) 

2P(  w, t )  = g‘( w)[x(  w, t )  -x( w, f + T)] = -2P( w, t + 57) 

2 a w ,  t)=g’(w)[x(w, t )+x(w,  t+57)1=2Q(w, t + V )  

(2.29) 

(2.30) 

allowing us to write 

P (  w, t )  = h:( w )  exp[(2v + l ) i t ]  h...v-l(w) = h z ( w )  (2.31) 

~ ( w ,  i )  =CYXw) exp(2vit) f--Y(w) = f i ( w )  (2.32) 

where Z denotes a sum over integer v from -CC to +a and 

h’:= v ( v + l ) p h ,  v # O , - l  (2.33) 

h,” = (Y eiep h ’ i , = a e  p CY, 0 constant (2.34) 

YI=(v’-a,pf” (2.35) 

-id 

where p(w) is given in terms of g by 

4g”+ pg  = 0 (2.36) 

and equations (2.22) and (2.23) give 

qw( w, t )  = -( P + O M  t ) + ( P ,  + Or )[ i (  t )  - g’( w k l  (2.37) 

qr(w,  t )  = ( P +  Q)gk+(g/g”)(P, + Qw)[i(t)-g’(w)kl (2.38) 

rlw( w, t + T )  = - ( P  - O M  t )  + ( P r  - Or Hi( t )  + g’( w)kI  (2.39) 

q r ( w ,  t + ~ )  = - ( P -  Q)gk+(g/g”)(P,-Q,)[i(t)+g’(w)k]. (2.40) 

In § 3 we will find boundary conditions to go with equations (2.29) and (2.30) which 
will determine P and Q. 

3. The common curve 

In § 2 we treated the helicoid and the surface of revolution as separate surfaces and 
only demanded that they do not stretch or tear when the structure is bent. Initially 
the curves x ( g ( u ) ,  U )  and y(u,  U )  are coincident and the curves x ( - g ( u ) ,  U )  and 
y(u, U + 57) are coincident. We require that they remain common curves under the 
deformation in order that the surfaces remain joined together. But we cannot allow 
this join to be flexible as in practice it has to be welded. Thus we shall require that 
all tangent vectors to the two surfaces which have their origin at a particular point on 
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a common curve transform rigidly together, i.e. the angle between any two of them 
remains unchanged under the deformation. 

Using (2.19), (2.21) and (2.37)-(2.40) t h e j  component of equations 

P:(u )  - $’(U) = P(u, U )  
= Q(v,  U) 

where we have written 

2P*(U) = & ( U ) )  f cp(-g(u))  

P + ( U ) + $ ( u ) =  Pt(u, u ) + ( g l g ” ) P w ( t !  U )  

P-(U) = QAU, V ) + ( g I g ” ) Q w ( u ,  0). 

and the i component gives 

The k component is then also satisfied. 

3.3) and 

(3.3) 

(3.4) 

3.4) gives 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

We next demand that the angle between a tangent vector in the helicoid and a 
tangent vector in the surface of revolution, both vectors originating from the same 
point on a common curve, be preserved under the deformation 

(3.10) 

(3.11) 

x u ( g ( u ) ,  U )  * rlw(Vv, U ) + Y W ( U ,  0) * 5 u ( g ( v ) ,  U )  = o  
x u ( - g ( u ) ,  U )  - rlw(U, U+T)+YW(U, U + T ) ’ 5 u ( - g ( u ) ,  u ) = O  

which using equations (2.5), (2.19), (2.21), (3.7) and (2.37)-(2.40) gives 

P t - ( P + + $ ) + ( g l g ’ ) P : = o  when w = t (3.12) 

0, - P - +  ( g / g ’ ) p ’  = 0 when w = t. (3.13) 

Equations (2.32), (2.30), (3.6), (3.9) and (3.13) determine fv(w) and hence Q and p -  

fv(w) = 0 U Z O  fo(w) = @(w) (3.14) 

P - ( W )  = @(W) Q(w, 1 )  = @’(w). (3 .15)  

This value of Q(w, t )  does not correspond to a true deformation but to a rotation 

Two of the equations (3 .5) ,  (3.8) and (3.12) may be regarded as defining p+(w) 
of the system through a constant angle e about the k axis. 

and $( w )  and the third gives the boundary condition for equation (2.29) 

h,  exp[(2v+l)iw] 

COS( w + e) -i(k - 4) sin( w + e) (3.16) 
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where X’ denotes the sum over v from --CO to $03 excluding v = 0, -1, and h,  is given 
by equation (2.33). 

The trivial solution h,  = 0, v # 0, -1 and a = 0 which gives 

P = p  cos( t+e)  P+(U) = 0 + = - p  sin( u + 0 )  (3.17) 

corresponds to rotation of the whole system through a constant angle p about a fixed 
axis i (e)  perpendicular to k. 

There are no solutions giving non-trivial deformations for arbitrary functions g( w). 
For a given functional form p(w) = -A2f2(w), equation (3.16) with h , ( w )  solutions 
of equation (2.33) may be considered as an eigenvalue equation for the eigenvector 
{a e*”, hio), h:‘”} and eigenvalue A. 

As an example let us consider the functions f which satisfy 

Then 

I a 
g(w)=-coshfA f d w  sf 

{fdw)  v # O , - l  

(3.18) 

(3.19) 

(3.20) 

satisfy (2.36) and (2.33) respectively with p = -A’f’(w). Equation (3.16) becomes 

x’a.(Af[tanh(fA If) + 2 [ ~ ( v + l ) ] ’ / ~ t a n  

-fi(2v+l)(A2f2+4) exp[(2v+l)iw] COS 

- { Z[f. - Af’ tanh( $A { f)] cos( w + e )  

-i( A2f2+4)fsin(w+f3)}f-”’a = O  (3.21) 

an eigenvalue equation for A. 

&,(A )av = 0 (3.22) 

Au,-,-1= A%, a-u- ]  = a: (3.23) 

where A,,(,+) is the coefficient of w‘ in 

( A  tanh(p - S A W )  + 2A [ v( v + l)]”’ tan{& - A[  v( v + l)]”’w} +$(2v + 1)(A2 + 4)) 

x exp[(2v+ l)iw] cos{py - A [  v( v +  I ) ] ” ~ w }  (3.24) 

for the constant solutions of (3.18). Thus the profile curve 

g ( w )  = a cosh(@ -$Aw) (3.25) 

is permissible with any of these eigenvalues. 
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The deformation ~ ( w t ) ,  t ( u ,  U )  is obtained from equations (2.20), (2.22) and (2.23) 
using 

~ ( w ,  t ) =  -2 E' a , [ v ( v + 1 ) ] 1 ' 2 e x p [ ( 2 v + l ) i t ]  sin{p,-A[v(v+l)] ' /2~} ( 
-2Awa cos(t+B) [ a  sinh(P -;hw)]-' 

cp'[a cosh(@ -$Aw)]-$'(w)[aA sinh(@ - $ A w ) ] - ' = ~ ( w ,  w )  

(3.26) 

(3.27) 
1 

cp[a cosh(@ - tAw)]  + +( w) = c' ((2v + 1)iA [ v( v + 1)]"2 sin{@u -[U( v + 1 )]1'2w} 

- 4v( v + 1) cos{py - A[ v( v + ~)]'/ 'w))a,, exp[(2v + l)iw] 

+ 2aA2w sin( w + e) + 8a cos( w + e). 
The other solutions of equation (3.18) 

f = (w+ c)-2 

give a profile curve 

(3.28) 

(3.29) 

g(w) = U ( W +  C )   COS^[^ - ~ A ( w  +c)-'] (3.30) 

which is permissible for eigenvalues A of an eigenvalue equation obtained in a similar 
manner. The deformation is determined by the eigenvector {a e"', a,, pu}  since it is 
given in terms of ~ ( w ,  t ) ,  4 ( u ) ,  $ ( v )  where 

X(W, t )  = (E' (( w + C )  cos{pY - A [  v( v +  1)]'/2( w + c)-'} 

- A [ v ( ~ + l ) ] ' / ~ s i n { p ~ - A [ v ( v +  l)]"2(w+c)-'}) 

x exp[(2v + l)it]a, +fA2a cos( t + e)( w + c)-2 

x ( a { (  w + c) cosh[@ - + A (  w + c)-'] + f A  sinh[@ -$A(  w + c)-']})-' 
) 

(3.31) 
cp'(a(w + C)  cosh[@ -;A( W +  c)-']}- $'(w){a cosh[p-fA( W +  c)-'] 

+;A(w+c)-' sinh[P -fA(w+c)- ' ]}- '=~(w,  w )  (3.32) 

cp{ U ( w + C )  cosh[ p - ;A ( w + c)-']} - $( W )  

=E'  ([(2v+ l ) i -4v(v+ l ) ( w  + c)] cos{p,, - A [  v( v +  l)]'"(w+ c)-'} 

- (2v+ l ) i ( w  + c)-'A[ v(v+ 1)]'12 sin(p, - A [  v( v +  1)]"2( w + c)-'}) 

xexp[(2v+l)iw] 

-fA2a( w + c)-~ sin(t + 0)  -8a cos(t+ e). (3.33) 

In general the permissible profile curves g( w )  may be classified as follows. g( w )  
satisfies 

g"-(fA)2f2(W)g=0 (3.34) 

where f(w) is an arbitrary continuous function but A must satisfy an eigenvalue 
equation (3.16). The deformations of the helicoid joined to the surface of revolution 
with this profile curve is given by the eigenvector and will in general involve undesirably 
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high Fourier modes in the variable t which may make the radius of curvature too small 
in places for us to neglect the forces due to bending. 

There is however an alternative classification of profile curves g(w). Given a, 8, 
h,(O), h:(O), i.e. x(0,  t ) ,  ~ ~ ( 0 ,  t )  and g(O), g'(O), equations (3.16), (2.33), (2.34) and 
(2.36) determine g(w) uniquely. The numerical method of solution given in the 
appendix serves as a proof of this statement. 

There is however the following example which can be treated analytically. 
Take h,(O) = h:(O) = 0 so that h,(O) = 0, v # 0, -1, then equations (2.36) and (3.16) 

give 

g"+2g'cot w + g = o  (3.35) 

where we have taken 8 = 0 without loss of generality: 

o<w<.rr  C O S ( d 2  w + p )  
g = c  

sin w 
(3.36) 

and 

P( w, t )  = 2aM' cos t (3.37) 

q( w, t )  = 2a[-2t -sin 2t, cos 2t - M, (M'g +4g') sin t ]  (3.38) 

where 

M " =  p =4(g+2g'cot  w)/g 

P ( U )  = -8a U-' COS V ( U )  du 5 
where U( U )  is defined with range 0 < U < T by 

cos(J? v + p )  
u = c  

sin v 

(3.39) 

(3.40) 

(3.41) 

( M ' + ~ ~ ' / ~ ) c o s  w dw. (3.42) 

The distorted system is given by 

u i ( s ) - c p ( u ) j ( s ) + k  (ucp'-cp)du-u+(s) (3.43) 

and 

[g( w )  cos t - 2t -sin 2t, g( w )  sin t + cos 2t - M, w + (M'g + 4g') sin t ]  (3.44) 

joined rigidly together along U = g(s)  on one surface and w = t on the other; also along 
U = -g(s) and w +  T = t.  

The curvature of these surfaces is such that bending strains remain small for thin 
metal. Unfortunately g ( w )  does not remain finite for a full pitch of the helicoid. 

If h,(O), h:(O) are small compared to a the solution g(w), p(w) can be determined 
from the case above by perturbation theory. 

If h,(O), hL(O), a, 8, g(O), g'(0) determine a smooth function p(  w )  (which we write 
as -A2f2(w)) the solution is given in the WKB approximation by equations (3.19) and 
(3.20) where f is a solution of the second-order differential equation (3.21). 
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If Q = 0 equation (3.21) is first order and may be written in terms of y =$A If as 

dy/dw = F f ( F 2  - l ) I ’*  (3.45) 

where 

F(w,y)  = ( f ( ~ , / ( t a n h y + 2 [ v ( v + l ) ] ” ~ t a n ( 2 [ v ( v + l ) ] ~ ~ ~ y + ~ , } )  
u = l  

xcos[(2v+l)w] c o s i 2 [ v ~ v + l ~ 1 ’ ’ ~ Y + p , ~ )  

m - 1  

x (  ” = I  c ~aU~(2v+l ) s in [ (2v+1)w]  ~ o s ~ 2 [ v ( v + l ) ] ~ ~ ~ y + ~ . } )  . (3.46) 

For consistency of the WKB approximation the resulting solution must be so smooth 
thatflfremains small, i.e. ( f l f ) ’  and (d/dw)(f/f) are both negligible so that equation 
(3.8) is approximately satisfied. This will only be true for certain values of IavI. 

x(w, t )  =E’ (4 [v (v+ l ) l ’ /2 (y ’ )2s in (2 [v (v+1)11’2y+~u}  

The deformation is given by ~ ( w ,  t ) ,  ~ ( u ) ,  $(U) where 

+ y” cos{2[ v( v + 1)]1’2y + P Y } )  
x laul cos[(2v+ l)t][&z(y”cosh y-2y’sinh y)]-’ (3.47) 

q ’ ( a 6  cosh y / m )  + 2 ( ~ ‘ ) ~ / ~ + ’ (  w)[a(y” cosh y - 2y’ sinh y)]-’ = x( w, w)  

c p ( a 6 c o s h y / m ) + $ ( w )  

(3.48) 

=c [ ( 2 v + 1 ) ( 4 [ ~ ( v + l ) ] ~ ’ ~ ( y ’ ) ~ s i n { 2 [ v ( v + l ) ] ~ ’ ~ y + P , }  

+ y” cos{2[ v(v+ ~ ) ] ” ~ y  + p Y } )  sin[(2v+ 1) w]  

x cos[(2v + 1) w]au(2y’)-3/2. 

- 8 V (  v + 1 ) ~ ’   COS{^[ Y( Y + 1)]1’2y + P u )  
(3.49) 

The deformation given by inserting Q, $ and x into equations (2.20), (2.22) and 
(2.23) is smooth and does not have large curvature if we take 1aUl zero for larger values 
of v. 

4. Conclusions 

A heat exchanger consists of a helicoid inside a surface of revolution obtained by 
rotating a curve g(w) about the axis of the helicoid. The two surfaces are welded 
inflexibly along the common curve. 

We have shown that this system is in general rigid for an arbitrary profile curve 
g( w),  but that a large class of profile curves g(  w) allow a deformation without stretching 
and these g(  w), together with I$( U), $(U) and x( w, t )  which give the deformation, are 
determined by two periodic functions x(0,  t ) ,  ~ ~ ( 0 ,  t )  (which change sign when 
t + t + T) together with g(O), g‘(0). IfX(0, t ) ,  ~ ~ ( 0 ,  t )  contain high Fourier components, 
bending stress in the metal will keep the system rigid. 

We have given an analytic solution g( w )  and the deformed structure when x(0, t ) ,  
~ ~ ( 0 ,  t )  are proportional to cos t. Other solutions have to be obtained numerically, cf 
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the appendix. However we are mainly interested in finding allowable profile curves 
g( w) rather than writing down the deformation it permits. In particular we would like 
to have found a g(w) with period 257. This is very restrictive since it requires that 
p ( w )  in equation (2.36) has this period and to have a scale which allows a periodic 
solution. This will not be compatible with the scale being an eigenvalue of (3.16) for 
arbitrary periodic functions p(w).  We must embark on a search, changing ~ ( 0 ,  t ) ,  

X W ( 0 ,  t ) .  
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Appendix 

We give here an algorithm to solve the equations (2.33) and (2.36) when p is given 
by (3.16). This is equivalent to finding the solution of the partial differential equation 
(2.29) from the initial values P(0,  t ) ,  Pw(O, t )  when g(w), + ( w )  and p+(w) are given 
by equations (3.6), (3.8) and (3.12). 

Let 

~v,n+l=277v,n - T v , n - 1 +  ~ ~ v ( v +  1)pnhv,n (Al l  

(A21 
1 2  Tn+1=2Tn-Tn-1-z& pngn. 

Then p is given by 

+ + Vn-1 (A31 

where 

(2v+ 1) exp[(2v+ l ) i n ~ ] ~ ~ , ~  
1 -A&%( v +  l)pn 

(2v+ I ) ~  exp[(2v+ l ) i n ~ ] r l ~ , ~  
1 - $ E 2 v (  v +  l)pn 

T n = i c  

S n = c  

and h and g are 

Equation (A3) uses Simpson's rule with error O(s4) in equation (3.16) written in the 
form 

(p-4) ig  ( 2 v + l )  exp[(2v+l)iw]hV 
+m 

v = - m  

I +m 

= 2  c ( 2 v + 1 ) 2 e x p [ ( 2 v + l ) i ~ ]  pgh,dw 
v=-m 
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where for notational convenience ho, h - ,  shall be the constants a eie, a e-” in this 
appendix rather than having the meaning they have in the text given by equation (2.34). 

Equation (A3) is an algebraic equation for pu,+l, all other terms being given at a 
previous stage in the iteration. The error involved in an iterative solution of this 
algebraic equation can be made smaller than O(c4). 

Finally the error involved in the Numerov part of the iteration, equations ( A l )  and 
(A7) being the solution of equation (2.33) given p and equations (A2) and (A8) being 
the solution of (2.36) given p, is O ( E ~ ) .  

Given h,(O), h:(O), g(O), g’(0) we can calculate p(O), p’(0) and p”(0) from (3.16) 
and its derivative at w = 0 and thus vy,o and qo from (A7) and (A8): 

g1= g(0)+g’(O)-QpL(0)8(O)&2-~(CL’(O)g(O) -pL(0)g‘(0))&3+(1/4!)g(4)(o)E4 

h , , =  h , ( O ) + h : ( O ) + ~ v ( v + l ) p ( o ) h , ( o ) & ~  

+ a V( Y + 1 )[ p ’( 0) h,( 0) - p (0) h :(O)] + ( 1/4!) h y ’ (  0) e4. 

The 
the combination 

terms needed to calculate p1 from equation (3.16) at w = E to O ( E ~ )  occur in 

g(4~(0)hv(0) - g ( o w t ) ( o )  

= [ - ~ ( 2 v + 1 ) ’ p ” ( 0 ) + ~ p 2 ( O ) -  v2(v+l)2]g(0)h(0) 

-tp’(O)g’(O)h,(O) - 2 4 v +  l)p’(o)g(O)h:(o) 

which is determined since we know p”(0) from (3.16). Knowing p l ,  we can calculate 
v1 and q,, from g , ,  hvl using equations (A7) and (A8) and set the iteration going at (Al) .  


